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ABSTRACT

Combat models often involve target detection times which may vary with

different observers due to characteristics of personnel, or detection systems. They

may also be affected by different environmental factors such as visual levels, sea

states, terrains, etc. There is often interest in quantifying the effects of different

observer characteristics and environmental factors on detection times. A hierarchical

gamma/Weibull regression model is considered which can incorporate observer

characteristics and environmental effects which may influence the time to detect

targets. Numerical procedures for the estimation of parameters of the hierarchical

gamma/Weibull model based on maximum likelihood are described. Results of

simulation experiments to study small sample behavior of the estimates are reported.
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I. INTRODUCTION

A. BACKGROUND,

Combat models often involve target detection times which may vary with

different observers due to characteristics of personnel, or detection systems. They

may also be affected by different environmental factors such as visual levels, sea

-states, terrains, etc. There is often interest in quantifying the effects of different

observer characteristics and environmental factors on detection times. In Chapter

'iI a, hierarchical gamma/Weibull regression-model [Ref. 1] is considered which can

-incorporate observer characteristics and environmental effects which influence the

time to detect targets. Numerical procedures for the estimation of parameters of the

hierarchical gamma/Weibull model based on maximum likelihood are described.

Results of simulation experiments to study small sample behavior of the estimators

are reported. In the remainder of this chapter, two models related to the one

considered in this thesis will be described. Numerical procedures for parametric

estimation for these models are studied in Bae [Ref. 2]. Experience gained

concerning the numerical stability of these procedures will be described.

B. TWO RELATED MODELS

Two parametric models for the distribution of time to detect targets were

considered in a thesis written by a Korean officer,Mr.Bae in Sept.,1989 [Ref. 2].

Model I :[Ref.2:pp.2-14] supposes that there are M observers. Observer i has

parameter A, which characterizes the ability of the observer to detect a target.

Observer i is presented with N, targets. The parameters of all M observers,

are assumed independent with a common two parameter gamma
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distribution. Given A, the detection times of observer i ate conditionally

independent, having Weibull distributions with known shape parameter e-' and

known scale parameter Aij for j = 1,2,..,N. Some of the detection times may be

censored. Bae [Ref. 2:pp. 2-20] reports on numerical procedures to find the

maximum likelihood estimates for the shape and scale parameters of the gamma

distribution.

Model 2 : is a Weibull regression model [Ref.2:pp.21-30]. It assumes observer

i has explanatory variables xjj, X2 ....., xjp relating to his jth target representing

factors which influence his time to detection. The detection times for the observers

are independent random variables having Weibull distributions. Again, some of the

detection times may be censored. The scale parameter of the Weibull distribution for

the detection times of the jth target by observer i is of the form jj-e'4v where
p

x,.--E x60, ; the shape parameter is of the form e "' . Bae [Ref. 2:pp. 21-36]
k-1

reports on numerical procedures to find the maximum likelihood estimates of { }

and {#.}.

C. OBJECTIVE AND METHODOLOGY IN THE COMBINED MODEL

The main effort of this thesis will be to study a full hierarchical gamma/Weibull

regression model which is a combination of the two previous models. Since the

models considered in Bae [Ref. 2] will be special cases of the one considered in this

thesis, it is expected that instabilities found in the numerical procedures to estimate

the parameters in the two previous models will appear for the combined model. Two

numerical instabilities that result from the numerical procedures of Bae [Ref. 2] are

described below.

In Model 1, a modified Newton-Raphson method [Ref. 3] is applied to solve

the nonlinear system of equations for the maximum likelihood estimates of the

2



gammapatameters. It is found that, particularly for small sample sizes, the slope of

the likelihood surface is very flat resulting in numerical instability for estimation of

the scale parameter -n. As a result, in the full hierarchical model presented here we

have used a single parameter gamma distribution as the second stage model. The

maximum likelihood estimate of the parameter is found by the bisection root search

method,[Ref. 4].

A numerical overflow phenomenon was occasionally found in the Weibull

regression model while iterating the Newton procedure for {i} in Model 2

[Ref.2:p.25]. Once again, the flatness of the relationship determining the estimate

of {e} resulted-in this instability. As a result, the Newton procedure to determine

{Q,} in the gamma/Weibull regression model of this thesis has some checks to detect

this numerically instability.

In Chapter II, a numerical procedure is presented to find the maximum

likelihood estimate for a single parameter gamma version of Model 1. In Chapter III,

the full hierarchical model is presented and numerical procedures to estimate the

parameters given. In both chapters, simulation results are presented to study the

small sample behavior of the estimates. All simulations were carried out on an IBM

3179 G mainframe computer at the Naval Postgraduate School using the APL

GRAFSTAT random number package [Ref. 5],[Ref. 6].

We hope that the hierarchical gamma/Weibull regression model and these

estimation procedures will be a useful tool to describe and predict target detection

times, which are one aspect of the effect of human performance on the battlefield.
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IA SINGLE PARAMETER GAMMA HIERARCHICAL MODEL

A. MODEL DESCRIPTION

This model =is very similar to Model 1 in [Ref. 2]. The difference is that the

parameters A , i = 1,2'...,M, which reflect the abilities of observer ito detect targets,

are assumed to be independent having a single-parameter gamma distribution,

GAM(ra) rather than having two parameters. The form of gamma density function

used here is

g(0) = a(a0)"- e for 0>0. (2.1)

For numerical reasons we will parametrize a as e". For convenience we will

reiterate the remainder of the assumptions of Model 1 given in [Ref. 2]. Given A,

= 6, the times it takes for observer i to detect target j, j = 1,2,...,Ni, denoted by Ui,

are assumed to be conditionally independent random variables with Weibull

distributions, WE1 1i,e ') having cumulative distribution function

P{Uat JA5= 0} = 1 - exp{-0(t/ji,)'I'} t >O (2.2)

independent of other observers. The variations of the A, are introduced to represent

the individual differences between the observers. When the ith observer is presented

with his jth target, only an opportunity time Oij is allowed for him to detect it. An

observer either successfully detects the target within this time or never detects it.

In the model of [Ref. 2], a two parameter gamma distribution is used.

4



Data. for the _ith observer consist of times of detection for the successes and the

lengths of opportunity times for-the failures. For each i = 1,2,...,M j =1,2,...,Ni

let

Y = min(InU(,,1nOo) (2.3)

and

I if Uij,5 Oij (2.4)
0 otherwise

The Yij are the censored In-detection times and Ai, is an indicator of whether the In-

time to detect the jth target by the it" observer is censored or not. Let

N , (2.5)

ci I IV.

be the number of targets detected by observer i. In this chapter, we will assume the

Weibull parameters {gi,)} and {} are known constants, and we are only interested

in estimating the gamma parameter q. In the next section, the likelihood function

for n is given and the bisection method for finding the maximum likelihood estimate

of 77 is described. In the final section, we present results of a simulation study of the

behavior of the estimators for small sample sizes.
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B. MAXIMUM LIKELIHOOD ESTIMATION AND THE BISECTION ROOT

SEARCH

1. The Likelihood Function

GivenA, = B, the conditional likelihood function [Ref.2:p.3] for observer

i using the censored in-times Y.- is

L, 10) = J [ e(yy "e-t]Aex4 - Oe ( Q'  (2.6)
Jul

Let

=j E exp{(y~, - 1nj,)e-' (j7jNl

and

K~ x IVA1 Y,- ,e'-~ (2.8)

Equation (2.6) can be rewritten as follows

L, UL I 0) = 6CKiexp(-0S1) . (2.9)

From the equations (2.1) and (2.9), it follows that the unconditional likelihood

function for observer i is

6



L.Aid,) d f( L{ ,B)g(O~do

0 f-cee~zc~)~ ~d 2.10)-

- cc (c+k)

In. equation (2.10); if Ci 0, then (a (+k) =I .Recall the parametrization a
W..

=e". The unconditional ln-likelihood function for observer i can be rewritten as

1nX, + ell - (C,+te1')ff(S1+e") + 1 hi(e"+k) (.1

where if Ci 0, then E* ln(e'1+k) = 0 . Since the observers are independent, the
kZO

unconditional In-likelihood for all M observers is

M

lnL = i1Li
iCI11 (2.12)

i k=OI

In this chapter, we will focus attention only on finding the maximum likelihood

estimate of n. The derivative of the In-likelihood with respect to n is

7



+ li (" f( i)+"

e + el k-O e'+k J

The maximum likelihood estimate for n is the~solution of the equation f(n) = 0.

2. Bisection Root Search for n

Initially, the Newton procedure was used to numerically solve the equation

f(n/) = 0. Unfortunately, the procedure frequently either converged to an

unreasonable number or encountered problems of numerical instability. Plots of f(n)

indicate that f can have multiple zeros. Arepresentative plot of f is shown in Figure

A 2 (next page). In Figure A, one v symbol indicates a zero of f, while two 7

symbols indicate the reasonable root to be used as the estimate for n.

2 This is a typical graph for f( 1 ) which was generated for simulated data with 0 = 10, M = 15, N = 15

and random seed = 16807. The true value of tj is 1.
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Figure A Multiple Roots of the Derivative of the In-Likelihood Function for n

As a result of these possible multiple zeros, the bisection root search method [Re41

is used to solve f(r)=O. The following sub-section will detail the estimation

procedure for n.
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a Initial Estimatefor n

The initialestimate for r/is-similar to its initial estimate-in the tw0-

parameter gamma model [Ref. 2], and is obtained by setting 3 = 0 in that

procedure.- Coisequentially,the initial estimate of n7 is

o = nft2- (2.14)

where

A, = r0.5772

M N,

A2 = Ijl

If 1;2- _--2 <0 ,set = 0 .

b. Determination of Bounds for the Root

The purpose. of this step is to bound the root that will be used as the

estimate between two points, called 17L and nl,. One of these points is ni° and the

other is found as follows

3 In MrBaes model [Refq2, the regular gamma disribu is parametriwd ,ith shape parameter v =e nID

and scale parameter a=e . Setting Po=O, a=v=el yields the one-parameter gamma distribution.

The estimate tit2h2- 7C <0 suggests that the variability of the data is small, Hence, it

might be better to set ri° equa! to a large positive number, such as 13. A topic for future research is
to explore beter initial values for tj in this default case.

10



Set 0 where 6 isasmall increment.

Compare the signs of f/lL):and f(nr) with f(n0) until the first different sign from f(r&°)

isfound. This yields a bound on the closest root, ton..

c. Bisection Search

After determining the left bound, rlL and right bound ,rR, we begin

the bisection search by picking the midpoint between them, called'rM, and computing

the value of f(77m ) . If f(lM) and f(flL) have the same signs, the root is on the other

side of iM; thus, move the left bound 77L to midpoint rm. If the signs are different,

move the right bound to the midpoint. Iterate the bisection search until
1l'-nR <0.01 . The maximum likelihood estimate of n is iM.

11M

C. IMPLEMENTATION OF THE SIMULATION AND RESULTS

1. Simulation

In order to study the sampling properties of the maximum likelihood

estimate of n, different numbers of observers (M), targets (Ni), and opportunity times

(Oj) are used as inputs to the simulation. Each set of inputs (M,Nj,Oi 1) has a

simulation run of (R) 100 replications and each run begins with the same initial

random seed (466801743). Statistics, of mean bias (M.B), mean square error (M.S.E)

and their standard errors (S.E(M.B) and S.E(M.S.E) ),.are computed according to

following definitions:

R1R

M.B 1- RE 0-n) (2.16a)

1



S.E(.B)= R(-2) ((~~-i)-M.) 2  2.i6b)

1 R
1

M.SE = r (2.17a)

S.E(M.S.E)2). ((o r-) 2 M.S.E)2  (2.17b)

where f r represents the point estimate of parameter n in the rth replication. The

fradtion- of detection level or the averaged uncensoring level (UC) for R (100)

replications is determined by

R1 M

E E C,(r)

= r=1 1:1 (2.18)

N P,(r)14

where Ci(r) is the number of targets detected by observer i in the rth replication and

Ni(r) is the number of targets presented to observer i in the rth replication.

Theoretically, the longer the opportunity times, the higher the UC level should be.

An outline of a replication in the simulation is as follows:

12



a. Input,to-Simulation

* M the number of observers (Possible values are 15 ,25 and 35)

* Ni the number of targets presented tothe ith observer, where i =
1,2....M ( Possible values are 15 ,25 and 35)

* O r the opportunity time for ith observer to detect the jth
target,(Possible values are 10 and 15). All of'the opportunity
:times are the same.

* the shape parameter of the Weibull distribution for ith observer,
where i = 1,2,...M ; ( Set ej = 0 for all i)

* ij the scale parameter of the Weibull distribution ,WEI(Aij , e-');
(Set Aij = 4.2)

* the parameter for the single-parameter gamma distribution
GAM(#), with a = e" ; (Set the true value of nl = 1)

b. Simulation of Data for ith Observer

Generate independent single-parameter gamma r.v.'s A, from
GAM(a,t),having the density function as in equation (2.1).

. Generate independent exponential distribution r.v.'s Wi with mean
1 i.e. Wi - EXP(1) for all i and j

* Compute the target detection times: 1 = WU) 5

* Compute the recorded In-times Yjj as in equation (2.3).

* Compute Aij as in equation (2.4).

5 ,Pl . gt I<i eA=0j ,{= W Oe i-" whicl, is the

conditional Weibull distribution of equation (2.2).

13



c. Initial rnand-.Bisection Search

Compute, A2 as in equation (2.15), and determine the initial value
of as in, equation (2.14);

* Perform the Bisection root search procedure for the maximum
'likelihood estimate, of n'- shown as the flowchart in Figure B.

All these procedures were written in APL codes,named "SIMULAI",

"GAMMA", and "FVALUE", which are listed in Appendix C.
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2. Results,

The results of the simulation experiments appear in Tables and graphs in

Appendix A. Tables 1 and 2 contain the general statistics for the bias of f1 at the

opportunity times 0 = 10.and 15 respectively. Table 3 in combination with box

plots, shown in Figures 1 through 3, presents statistics of the bias of the estimates of

nl as a function of the numbers of targets and observers in the case 0 = 10. Figures

4 to 6 show histograms of the bias with the number of targets fixed and the number

of observers changing. Similarly, Table 4 and Figures 7 through 12 focus on the case

O = 15. In summary, the simulations indicate the following:

* Opportunity time (0)
Tables 1 and 2 indicate'that a longer opportunity time is-reflected in
a higher uncensoring level (UC), which slightly decreases the mean
bias (M,B) and mean square error (M.S.E) of nj.

* The Number of Observers (M)
Increasing the number of observers for a fixed number of targets
results in greater changes in the mean bias and mean square error of
n than increasing the number of targets with a fixed number of
observers. All the box plots and histograms display this tendency.
This phenomenon is quite reasonable, because the parameter n in
gamma distribution reflects the variability in abilities of observers.
Hence data with more observers will provide better estimation of 77
( less bias and standard error).

* The Number of Targets (Ni)
The box plots indicate that increasing the number of targets for a
fixed number of observers has a small effect on M.B and M.S.E of n7
with no systematic trend.

16



-Ii. THE IERARCHICAL GAMMA/WEIBULL REGRESSION MODEL

A. MODEL DESCRIPTION

Recalling the assumptions of the model, we suppose there are M observers,

indexed by i. The iVh ObserVer is presented with N targets, indexed by j. The

variable Uij is the time it takes for observer i to detect the target j. Let xijl, Xij2.

xio be the values of environmental variables (e.g. terrain, sea state , atmospheric

condition etc.) which may affect U. Given the quantified value of the ability for

observer i, A, = 0, the Uij's are assumed conditionally independent random variables

having Weibull distributions, WE(V,e'') ,where the scale parameter, instead-of

-being constant, has the form

11V = expxA) = exp{lkxV}. (3.1)

The regression coefficient fi is the contribution to the Weibull scale parameter of

the kth explanatory variable. f0 is usually the constant term in the regression. The

random variables {A,} are assumed independent from a single parameter gamma

distribution, GAM(a, e) with a = e ".

B. MAXIMUM LIKELIHOOD ESTIMATES FOR ALL PARAMETERS

The model assumptions detailed above are the same as those in Chapter II,

except that the scale parameter aQ in the Weibull distribution is now a function of

17



the explanatory variables. In this section we consider the estimation of all the

parameters of n, {#}. and'{}.6

From equations (2.7), (2.), (2.12) and equation (3.1), we can rewrite the

unconditional in-likelihood function for all M observers as follows:

InL

g ljn K + e'l - (C,+en)1nCSte ) + Elne+k)

NWhere K1, EA ~ - (3

and S, = Eexp {~~ 1 ~e'}
J=1

Yij, Ai, and Ci are defined in equations (2.3), (2.4) and (2.5) respectively.

In the following sub-sections, we will describe the procedures which are

employed to estimate all the model parameters. The general procedure includes the

initial rough estimation of {Pk} and { ,} without the hierarchical gamma r.v.'s; a

variability check for the need to include the hierarchical gamma parameter n; and

finally, a large recursive procedure for estimating all the model parameters if a

hierarchical model is necessary.

1. Initial Estimation of a Simple Weibull Regression Model

An initial model for the data is the simple Weibull regression model for

the target detection times described previously as the Model 2 of Bae [Ref. 2:pp. 21-

30]. The key steps of the estimation procedure are summarized as follows:

6 In the Model 2 of Bae [Ref. 21, no gamma variable was involved. Only the Weibull parameters

{, } and { ) were considered.

18



t p-1.1 :Initially, set x~ IflUQ and ;O =0.

Stgp-1.2 :T'his is an~iteratively re-weighted regression step; cf. McCullagh

and Nelcier [Ref., 7].

Let

= -( OUex ? (3.3)

FP (r,,)(3.4)

U~h= i -tow where h=0,1,..,p (3.5)

( (Aq~w') 0
zU+iYUVhh +1~e=t (3,6)

Regress the dependent variable zi against the independent variables Uijh,

for h =0,1,...,p ; e.g. the estimate has the form

B= (Lr _Y (3.7)

where

7From this page on, all parameters with superscript 0 imply the current values of their estimates.
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z11, U116 . . !P

,ZNr UlNI0 . . . ui21p

Z21  U210  ' * • 21p

* - 4 4 * 4

z = z2N2  = u2&I2°V ' (3.8),(3.9)

ZMI UMJO ".UP

Step-I.3 Compute the new by an approximation based on Newton's

procedure. First, update the value of

0

r1 = - ~~O)e-tl , where Jo B (3.10)

Compute

20



", j =,

Stp-. :Udae nd i

Pop where k-O,1,...,p

p

CompUte the new value of OK = , xkD and iterate the regression,

starting at Step-1.2, for one more time,

2. Does the Simple Weibull Regression Adequately Account for the"

Variability of the Data ?

The full hierarchical model will be used if the data indicate more

variability •than can be described by the simple Weibull regression. If the data do

come from the simple Weibull model, then

) J1= ,2,...,N,

21



will 1-have the same distribution as independent exponential- random variables8 with

mean 1. To -assess the Variability not accounted for by thesimple regression model,
-wecompute

":, OE =

(N- j (3.12)

M
and N= 2N .

Since the variance of a unit exponential is 1, if a < 1 ,then we will stop the model

fitting with the simple Weibull regression model. If 62 > 1, we go on to the

hierarchical model to explain the extra-variability. Unfortunately, crude estimate of 62

uses both the observed and unobserved UT A topic for future research is to improve

the estimate of the variability not accounted for by the simple regression model.

Step-.5 : If 6 < 1, stop and use the Weibull regression model only.

Otherwise, the data will be modeled with the full hierarchical model. A recursive

procedure to estimate n , {k} and {} follows and is initialized with {f3P} and

{ } computed above.

U <j- 1V j tl _ "= - which is the pure Weibull

distribution.
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3. A Recursive Estimation Procedure for the Parameters of the Full

Hierarchical Model

a. Bisection Search with Instability Check for Estimating
8a1niL

The partial derivative of equation (3.2) with respect -to , -- Mi

the same as the derivative of the In-likelihood with respect to nl for the model of

Chapter II. The derivative appears in (2.13) and once again the problem is to solve

the equation fi()=0. Using the estimates {13°} and { } an initial estimate for

n is computed as in equation (2.14) ; that is,

= (3.13)

where

An1 = -0.5772

M N, r 01

, ____ (YV-Xy ,. ) e-_ (3.14)

2  M 1 N1
EEAis

If A2-A - < 0 set 70 =0.9
6

In addition to determining the bounds for a reasonable root to be the

estimate of n as described in Chapter II, a check for the shape of f(27) is also

performed. This additional check is performed because two of the simulation

replications exhibited a very flat f(n). The graph of fi) for one of the two

9 Same as footnote 4 on page 10.
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,, rephcatons appears .iFigureC . This unusual shape for f(r)tesuits ini the

bisecon method converging-to an unreasonable ioot (eg.g. -, =146 in,the1FigureC).
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Figure C An 11-Conditioned Derivative of the In-Likelihood Function for i

'The graph in Figure C indicates that the values of f(Ti) are asymptotic

to a fixed nonzero value as rn tends to -, ; this behavior is the same as in Figure A.

H~owever, when r is positive, f has very flat curve. The values of f(1i) are positive

1o The graph is one of the only two ill-conditioned cases for 1"(r1 ) in the shmuhations. This case

occurred in- the ganima/Weibull regression mnodel with 0=10, M=15, N=25 and random seed =
1905665785. The other case occurred with 0 =15, M = 15, N=25 and same random seed. The true value
of ,1 is 1.
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and close-to zer o but the curve does not actually cross zero-until l is -large. The

following check~is done to detect this situation. If a reasonable right-,hand boundfor

a zero offQ#) .cannot be found, ,check the values.of f() and f'(ri) for n positive if

the absolute value of'f(n) is less the -c1 and,-the absolute value of f' (fl) is less than

c2, where 1 >> )> 2  0, ,then the simulation stops for ,this set of random

numbers: and new random numbers are generated. Otherwise, perform the bisection

search as describedin Chapter Ii. In theprocedure, f' (n) for n positive is estimated

as

(3.15)

W here ' fR(k) = 11 +kx
8

04.< l+k-1)X8.

The algorithm of this bisection search with the check for flatness of the curve of f

will be detailed later in Figure D.

b. The Least Squares Regression Procedure to Solve for {dk}

The previous estimates of no, {fPk} and { } are input to this stage.

The partial derivative of equation (3.2) with respect to fk is

a , L (3.16)
a~k S1+en' apk

where
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-'X -Y- ,e

Thus

Two terms of a, Taylor expanision of equation (3.17) yields,

~ C~eTO 4 (y. ]} (3.18)

0

W CI en ______ i - x(3.19)

\,eO j -0

The equation (3.18) can be rewritten as

26



'N0____ (3.20)-
i-Ijo hU 4O

Let,

0

U~jh =;h W Ve-t, (3.21)

and

z 4-1____ =P- (+W , e-tlX . o '  (3.22)
WU h-0 WU

The equation (3.20) can be rewritten as

V- E Uh Ph )Uk (3.23)

which are the normal equations for a least squares regression having dependent

variable zij and independent variables -ujk, k = 0,1,...,p.

The solution of (3.23) is

B = (rL/)-z (3.24)

where Z and .V are defined as in equations (3.25) and (3.26) respectively.
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Z11 R11o * 1P

'f12 U .~ . .•U12

'Ziml, /INTO . . . U&21p

z zw - U"2N " (3.25),(3.26)

* S S S S S

ZM, UN)0 5 'MIP

zz u A ... Uu~f

This procedure is an iteratively re-weighted least squares regression; cf. McCullagh

and Nelder [Ref. 7].

c. Newton Procedure to Solve for {$i}

The prior estimates of n0, {3} , {} and {t} are input to this

stage. In order to update thc values of {}, we need to have the partial derivative

of unconditional In-likelihood function for observer i with respect to i. The

unconditional In-likelihood function for observer i is the same as equation (2.11).
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The derivative is -as- follows,:

{~ ~~~~i~q A4Y-)e>.]~S 1 a~i (3.27)

whe're as. Eexp{(yi,-.x..)e'}e

Again, let

Y, -VUe~

The equation (3.27) can be rewritten as

8lnL, =1 h(Q = -C1 + E r.jp- i+ 0 exp(r,,ij . (3.28)

Treating si+,oas a constant, then

82lnL. ____QIv

2-C. - Eeprij)r (3.29)
Ki ai si+eI11.1

if = h( ) = 0 , the Newvton equation for Ej is

0r.'L r h(Q = h( O)+ a h( j)[ j-t j] . (3.30)
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Update the vaue of ,by solving the following equation:

t-h(-) (3.31)

As noted before, it is possible for equation (3.31) to be badly conditioned. If

Ih()<c, and .ah( <e2 ,where'> >1>>E 2>0, then equation (3.3i) is badly

conditioned. This behavior happens occasionally and occurs for only one ei out of

the M. To avoid this behavior, if jh<e and h <0i , then put

otherwise let ibe the solution to equation (3.31). Return to the bisection

search procedure and iterate steps 3.a to 3.c until

M4(L- 1 R __-__ , - < 0.01 for all k=0,..,p and i= 1,..,M.
Ti-m P0
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C. IMPLEMENTATION OF SIMULATION

Simulation will be used to study the small sample behavior of the estimators

of the-five parameters of the gamma/Weibull model. Different numbers of observers

(M), targets (Ni) and opportunity times (Oij) are used as the input to the simulations.

For each set of input, (O,M,N), the simulation run starts with the-same random seed

as in Chapter II. The simulation is run until there are 100 (R) estimates of r7. A run

will contain more than 100 replications if the simple Weibull regression model is

found to describe the variability of the data for some of the replications or if the

procedure to find the estimate of n is badly conditioned. The statistics of mean bias

(M.B), mean square error (M.S.E) and their respective standard errors (S.E(M.B)

and S.E(M.S.E) ) for all the estimates are computed using the definitions in

equations (2.16a,b) and (2.17a,b). The averaged uncensoring levels (UC) as

computed using equation (2.18) are also reported. The statistics for {C1} do not

include those Ci for which Ih(C1)I < E1, (e,=0.1), and Ih'( 1)I < c, (E2=0.04

The remainder of this section provides an outline of one replication in the

simulation.

1. Input to Simulation

0 M the number of observers ( Possible values are 15 , 25 and 35).

6 Cj the shape parameter of the Weibull distribution for ith observer,
where i = 1,2,...M ; ( Set ej = 0 for all i ).

n the parameter for the single-parameter gamma distribution,
GAM(a,c) , where c = e" ; (Set q = 1).

N i  the number of targets presented to the ith observer , where i =
1,2,...,M ; (Possible values are 15 ,25 and 35).
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S..ijk  the kth environmental factor which affects the observation time
of the ith observer when presented with the jth .target.

- the opportunity-time for the ith observer to detect the jth target;
(Possible values are 10 and 15).

S{pk} regression coefficients for the scale parameter of Weibull
distribution, ,WEI( O , e=  ), where k = 0,1,2,...,p and

pu = exp{Exk pk ; (set p = 2;#0o = 0.8, P1 = -0.2 and fi

= 0.5).

2. Simulation of Data for the ith Observer

0 -Generate a single-parameter gamma r.v. ,A from GAM(ot,a),having
density function as in equation (2.1) where a = e" and-n = 1.

* Generate environmental factors r.v. x1ik ; the xij, are independent with

normal distributions having mean Pk and variance o2 for k =

1,2,...,p; (Setp = 2;p = 1, o = 0.5 and j92 = 2, o = 1).

Put xjij = 1 for all ij.

* Compute the Weibull shape parameter pij as in equation (3.1).

* Generate independent exponential distribution r.v.'s Wij with mean
1; i.e. Wij ~ EXP(1) for all i and j.

0 Compute the target detection times : = .

0 Compute the recorded In-times Yi, censoring indicator Ai, and C,
using the definitions in equation (2.3), (2.4) and (2.5) respectively.
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3. Initial Estimate of k'S and -in the Simple Weibull Regression Model

withopt. the Hierarchical, Gamma r.iv.'s

Step-1.1 : Initially; set x° =lInU and o =0

Step-1.2 : Iteration for regression

Compute rij , uij and zij as in equations (3.3) to (3.6).

Regress the dependent variable zij against the independent
variables uijh for {Yk} as in equations (3.7) to (3.9).

Step-1.3 : Newton's procedure for estimating Cj

0 Update the value of rij as in equation (3.10).

* Compute the new j as in equation (3.11) with no need to check
the ill condition.

Ste2-1.4 Put { }={ , and {r }={(P4}for all i = 1,2...,M and

k =0,1,..,p. Compute new value of x = o2 xijk 0° and return
V k= 0

to Sten-1.2 for only one iteration.

Stev-1.5 Check for extra-variability in the data by computing the sample

variance 62 for the times Uij as in equation (3.12).

If E < 1 , stop and quote the simple Weibull regression

model only with the parameters as estimated.
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Otherwise, execute next the recursive procedure.

4. RecursiVe, ProcedUre to Estimate the Parameters of theFull Hierarchical

Gamma/Weibull Model

Input :initial I3o ,k=0,1,...,p; o ,i=1,2,.,M.

Step-2.1 Initial condition for gamma parameter q1

Update xX,.° = EXVIk Pk
k- 0

Find the initial condition for n using equations (3.13) and (3.14)

If 2_-, 2-' <0 ,setno = 0.

Step-2.2 Perform the bisection search for nj using the algorithm shown in

Figure D (next page). The algorithm includes a check for the

flatness of the curve of fin).
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.Stev. Iteraiion for the regressioncoefficients { k}

.Compute wij , ij and zii using equations (3,19), (3.21), and
(3.22).

Regress the dependent variable z.. against the independent
variables Uijh using equations:(3.24) (3.25) and (3.26).

Step-4.1 : Iteration for the In-shape parameters ,{}, of the Weibull'
distribution

P

Update x .°= k and rt= (yu - x,.V)e-'o'
k-'0

Compute h( ') and -Lh(t) using equations (3.28), and

(3.29) respectively.

If and .-- h(t <C ,for c1 = 0.1 and c, =

0.01 , keep t = ti Otherwise, update ej using equation

(3.31).

Step-4.2 Test for stop criteria

If , < 0.01 for all k=0,..,p and
00

i 1,..,M, then, stop and record the estimates. Otherwise, set

= T , Po = Pk and return to Step-2.2.
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The simulation programs for this gamma/Weibull regression model, named,

"SIMULW.", tGAMWEI' and "FVALUE", are detailed in Appendix D.

D. RESULTS

Results of the simulation experiments are presented in Appendix B. The results

are presented in five sections. Each section shows results for one estimator; the

gamma parameter n and the Weibull parameters f0, fi, 1 2 and *. Each section

contains tables of statistics and histograms of estimate bias for different numbers of

observers (M or OBS), targets (N or TGT) and opportunity times (0).

The first two tables in each section present the statistics for different

opportunity times ( 0 = 10-and 0 =15 in our case ). The next two tables organize the

information to highlight relations between the number of targets and the number of

observers and the statistics of the estimates. Histograms of the biases' of the

estimates are also presented. All parameter estimates appearing in Appendix B are

from replications for which the full hierarchical gamma/Weibull is estimated.

Since zll , the statistics for {} are for the average of the { } for all the

observers in a replication. The average includes only those ,'s for which the Newton

procedure converged. The replications for which 62 < 1 and the replications in

which i? could not be found are not used to compute the statistics appearing in

Appendix B; statistics concerning the numbers of these cases appear in Tables A and

B below.
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The statistics in Appendix B use 100 replications. Tables A, and B below show

the averaged uncensoring levels,,-the number of additional replications for which nj

could:not be found due to the flatness of f, and-the number of times a ei could not

be found using Newton procedure due to the smallness of I h(ei) I and h' (i)J. The

results of Tables A and B (next page) are summarized as follows:

* Uncensoring level (UC):
A longer, opportunity time (0) is reflected in a higher average uncensoring
level (UC). The opportunity time 0 = 10 gives about 76% UC, while 0
= 15 gives about 85% UC. This behavior is what we would expect.

* The variability of the data explained by the simple Weibull regression:
Different parameter estimates in the simple Weibull regression cause the
different number of cases for which { 6 2 _ 1} for the same input of

number of observers and number of targets in Tables A and B. In both
Tables A and B, the cases of { 2 _ 1} appear more frequently when

the number of observers (M) is smaller. This is reasonable behavior since
more observers tend to provide more evidence that a hierarchical model
is needed to explain the variability of the data. The manner in which

6,E is computed prevents drawing conclusions concerning the effect of
censoring on the assessment of unexplained variability.

• Instability check for n :
There are only two replications in which n could not be found using the
bisection search for the root of f(n). The function f(tn) for one of them
is plotted as in Figure C, and the function for the other is similar. Both
replications used the same random seed but had a different set of inputs,
(M,Ni,Oj). These two replications were stopped and new random numbers
were drawn. This behavior did not occur in the model of Chapter II with
known parameters for the Weibull distribution.

* Instability check for e :
Smaller opportunity times tend to have more replications in which the
procedure to find j is badly conditioned. The maximum number for any
case is 2.
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TABLE A: Comparisons, ofUncensoring levels, Extra Variability Checks-and Checks
of Numerica rInstabilityat 0 10 ....

Number of 'Number of Average Number of Num. unstable Num. unstable
Observers Targets UC { 6 < 1} f(n) h and h' 12

15 76.4% 11 0 la

25. 76.4% 5 1 015 ' ..... ...
135 75.6% 6 0 0

15 75.8% 1 0 lb

25 75.8% 2 0 1

35 76.4% 1 0 0

15 76.2% 0 0 2d

25 76.3% 1 0 le

35 76.3% 0 0 0

TABLE B : Comparisons o',Uncensoring levels, Extra Variability Checks and Checks,of Numerical Instability at 0 = 15

Number of Number of Average Number of Num. unstable Num. unstable
Observers Targets UC { 6E < 1} f(0) I and h'

15 85.0% 23 0 0
25 85.4% 6 1 0

15 35 84.6% 11 0 0

15 84.5% 3 0 if

25 25 84.7% 7 0 0

35 85.3% 5 0 0

15 85.2% 5 0 0
25 84.9% 3 0 0

35 35 85.1% 2 0 0

12 All the cases of numerically unstable h and h' were obtained while replicating the simulations

starting with random seeds a:999445582, b:444977940, c:538790986, d:999445582 & 153499960,
e:1011786849 and f:444977940.
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In Appendix B, the statistics for the average observer i, do notinclude those

individual - for which 4he Newton procedure did not converge. The statistics for fik

do not include those replications for which the simple Weibull regression model was

used to describe the data. A summary of the results of the simulation experiment

shown in Appendix B follows:

The estimate of the gamma parameter,
The mean bias tends to be positive. The histograms of biases indicate that
the distribution is skewed to the right. Since the variance of A, is e', the
positive mean bias of n suggests that for small sample sizes the procedure
is indicating less between variability than there is in the data, Increasing
the number of observers tends to decrease the mean bias and mean square
error. Increasing the opportunity time has little effect on mean bias and
mean square error. Increasing the number of targets has little effect on
mean bias and mean square error. As noted in ChapterII, this behavior
is reasonable.

* The estimates of the Weibull parameters, 030 through P2
The first two tables in parts 2 through 4 of Appendix B indicate that all
the M.B and M.S.E of {k} are quite small compared to those for nj. This
is due to the larger sample size used in computing {P,}. An increase in
the opportui'ty time has little effect on the mean bias and mean square
error. Increasing the number of targets or observers with a fixed number
of the other yields small changes in M.B and M.S.E. However, increasing
both the number of targets and the number of observers does tend to
decrease the mean bias and mean square error of {Pk}. The M.B's are
both positive and negative.

• The average estimate of the Weibull parameter, _1Ei
Mi-l

Since e =1 in the simulations, the histograms and statistics include the
averaged j for all the observers for which the Newton procedure for ei
converged. Generally, all the magnitudes of M.B and M.S.E of in the
first 2 tables of part 5 in Appendix B are quite small. All the M.B of the
averaged & are negative. The M.B. and M.S.E. are slightly smaller for
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on ger opportunity times. Icreasing the number of targets or the number
of observers with the other fixed ,redlts small-changes in the M.B and
MS.E. Increasing both the number .of targets and the number of
observers tends to decrease the mean bias and mean square error.
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iV.CONCLUSIONS AND RECOMMENDATIONS

The main effort of this thesis is to study the small sample behavior of

estimators for a hierarchical gamma/Weibull regression model for target detection

times. This model can also be used to describe and predict times to failure of similar

machines, (e.g. engines) in different environments. In this thesis, the model assumes

that there are M observers. The ith observer is presented with Ni targets. The

-variable Uij is the time it takes for observer i to detect the target j. Let xi, I Xij2.

xj, be the values of environmental variables which may affect Ui,,. Given the

quantified value of the ability for observer i, A, = O, the U,,'s are assumed

conditionally independent random variables having Weibull distributions,

WEI p.,e - ') , where the scale parameter has the form

Lv - exp{isa.--exp { kk} The random variables {A,} are assumed

independent from a single parameter gamma distribution, GAM(a) with o = e'". A

numerical procedure based on maximum likelihood is used to estimate the

parameters of the model. The numerical procedure is iterative and uses a bisection

root search method for estimating the gamma parameter n , least squares regression

to estimate the Weibull ln-scale parameters 0o through P2 and an approximate

Newton procedure to estimate the Weibull ln-shape parameters {,}. Simulation is

used to study the behavior of the estimates for small sample sizes. Generally, the

numerical estimation procedures work well. There are few numerical problems. All
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'the fnean biasesand mean square errors of the estimates tend to be small compared

to the theoretical inputs to the simulation..

Topics for future research include replacing the one parameter gamma

distribution with the two parameter gamma distribution in the hierarchical model and

exploring the use of EM methodology to estimate model parameters. The two

parameter gamma distribution arises as the posterior distribution of the current

model. Another area is to study using the fitted hierarchical gamma/Weibull model

to predict future performance.

It is hoped that the hierarchical gamma/Weibull regression model will be a

useful tool to describe and predict one aspect of the effect of human performance

on the battlefield.
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APPENDIX A. STATISTICS AND GRAPHICS FOR THE ESTIMATE OF
?I IN ThE SINGLE PARAMETER GAMMA MODEL

Table 1. Mean Bias, Mean Square Error, Std. Error and Uncensored Level for 11 at
S= 10 in the Gamma Model

Number of Number of u
Observers Targets M.B(S.E) M.S.E(S.E)

15 0.0727 (0.0497) 0.2477,(0.0693) 81%
15 25 0.1027 (0.0436) 0.1967 (0.0269) 82%

25 0.067 (0.0466) 0.2173(0.0569) 82%

5 0.1003 (0.0311) 01051 (0.0167) 82%
25 25 0.0566 (0.030,1) 0.0935 (0.012) 82%

35 0.0682 (0.0274) 0.0784 (0.0108) 82%

15 0.058 (0.0281) 0.0807 (0.0129) 820

35 25.j 0.00S8 (0.0253) 0.0626 (0.0092) 82 o

35 0.0472 (0.0221) 0.05 (0.0103) 82%

Table 2. Mean Bias, Mean Square Error, Std. Error and Uncensored Level for q at
O = 15 in the Gamma Model

Ntmber of Number of UC

Observers Targets M.B(S.E) I M.S.E(S.E)

15 0.0614 (0.0434) 0.1886 (0.0413) s 9%
15 25 0.088-1 (0,0428) 0.1875 (0.026 ) 90o.

35 0.053 (0.0452) 0.2032 (0.052) 90%

15 0.094 (0.0305) 0.0998 (0.0151) 90%
25 25 0.0517 (0.03 ) 0.0911 (0.0115) 90%,

35 0.0706 (0.0271) 0.0785 (0.0103) 90%

15 0.0519 (0.0277) 0.0781 (0.0132) 90%
35 25 0.0085 (0.0246) 0.0593 (0.0086) 90%

35 0.0471 (0.0216) 0.0481 (0.009) 90%
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Table 3. Tendeficies of Mean Bias and Mean Square Error for ti at 0 = 10in the
Gamina Model,

[.. : 'M.B(M.S.E) of i _

15TT 25'TGT 35 TGT
15'TGT -

15 OBS 0.073(0.248) 0.103(0.197) 0.067(0.217)

25 OBS 0.1 (0.105) '0.057(0.054) 0.068(0.078)

35 OBS 0.058(0.081) 1 0.009(0.063) 0.047(0.05)

'D = i ( UC 82 PERCENT

M =15 <=> N =15

....... ........ ... .......... ............ 
01-

2 4 e
N 15 N=25 N=35:M=15 M=25 M=35

Figure 1. The Tendencies of the Bias of q with changes in OBS and TGT at 0 = 10
in the Gamma Model: M = number of' observers ; N = number of'
targets.
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0 10 (UC 52 PERCENTJ

-M ,-25 N= 25-

0

. .

2 4 U
N =15 N =25 N =35: M 15 M 25 M= 35

Figure 2 The Tendencies of the Bias of 1i with changes in OBS and TGT at 0 = W0
inlthe Gamma Modelh M = number of observers ; N number of
targets.

0 10 (UC : 82 PEPCENT )

M =35 <=> N 35

F

I

2 4, B
N =15 N 25 N 35: M 15 M =25 M 35

Figure 3. The Tendencies of the Bias of l iiith changes in OBS and TGT at 0 = 10
in the Gamma Model: = number of observers ; N = number of
targets.
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T&T 1:5, 'o 10 (,Uc 82 PERCENT)

M= 15 M 25

-1C123 -1 0 1 2 3
AS OF ETA BMA OF ETA

M 35

R .

6V, OF ETA

F igure 4. Coniparisoil of the Bias of yj bet~een D~ifferent numbers of Observers wiith
TGT = 15 at 0 = 10 in the Gamma Model: TGT = the number of
targets,
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TGT =25 .0, 10.( UC 82 PERCENT)

M, 15 M- 25

o ' d ' I I I t

0 13 l 2 3
WAS OF ETA 8MA OF ETA

M =35

J
V~ Or LTA

I-:

Figure 5. Comparison of the Bias of il bet'~een Different numbers of Observers ifth
TGT = 25 at 0= 10 in the Gamma Model: TGT = the number of
targets.
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TG = 35-,0T l'b( UC :82 PERCENT)

W.=25

* -1 I

-~ 2 l C1 23
3MA OF VTA M1A OF VA

M =35

0-1S OF Elk

Figjure 6. Comparison of the Bias of il bet~een Different numbers of Obsen~ers 'i ii
TGT = 35, at 0 = 10 in the Gamma Model: TGT = the nuinber of
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Table 4. Tendencies of Mean Bias And Mean Square Error for- q at 0 = 15 in the
Gamna Model

'_ _ _ M.B(M.SE) of )'I

15 TG' 25 TGT 35 TGT

15 OBS 0.061(0.189) 0.088(0188A) 0.053(0.203)

25'013S 0.094(0.1 ) 0.052(0.091) 0.07,1(0.078)

35 OBS 0.052(0.078), 0.008(0.059) 0.047(0.048)

0 = 15 (UC 90 PERCENT)

M =15 <=> N 15

9f 0

* I

4 < I

24

N 15 N = 25 N= 35: M =15 M =25 M =35

Figure 7. The Tendencies of the Bias of qj with changes in OBS and TGT at 0 15
in the Gamma Mlodel: M = number of observers ; N = number of'
tarects.
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=-4 ><U :90PECEndf

...........

N 15 N 25 N -35 M 15 M -25 M - 5

Figure S. The Tendencies of the Bias of ij wvith) changes in 013S and TGT at 0 15
in the Gammia Model: NI = number of observers ;N =number of
targets.

D = 15 UC : 90 PERCENT)

M=35 <= N 35

........ .... ... ....... .... .........

2 4
N 15 N =25 N 35: M =15 M, 25 W,35

Figure 9. The Tendencies of the Bias of qii with changes in 0OBS and TGT at 0 =15;

in the Gammna Model: N! number of observers ; N = number of
targets.



TC-T= 5,0 = 15 (UC :90 PERCENT)

M =25

i,1:

01 1 1

IS CF ETA w OF A

M , 35

-I -' 0 12

WS OF ETA

Figure 10. Comparison of the Bias of y1 between Different numbers of Observers
with TGT = 15 at 0= 15 in the Gamma Model: TOT = the number
of* targets.
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TGT =25 b 0 T 5 (U 90PRCENT

Vk- 15 'M- -25

-21 2 -2 -11 0 12
BIG OF A 8MA OF ETA

M 35

OM F A2

Figure 11. Comparison of the Bias of q between Different numblers of Observers
With TGT = 25 at 0=145 in thie Gammna Model: TGT = the number
of targets.
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TGT =35 , 15 (UC 90 'PERCENT)

- ~15M =25

M =35

DMS OF ETA

Figure 12. Comparison of the Bias of ij betiseen Different numbers of Observers
with TGT = 35 at 0 = 15 in the Gammia MNodel: TIGT' = the number
o1r targets.
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APPENDIX B; STATISTICS AND GRAPHICS FOR ALL THE
ESTIMATES IN GAMIA-/WEIBULL REGRESSION MODEL

1. TABLES AND HISTOGRAMS FOR ,j

Table 5. Mean ias, Mean Square Error -and Std. Error for I at 0 = 10 in the
GAM/WEJ Regression Model

Number of Number of ...... _ _ _ _ _
Observers Targets M.B(S.E) M.S.E(S.E)

15 .1770(.0552) .3299(.0S92)
15 2: .1573(.0455) .2274(.0445)",

__ _ 35 .0761(.0440) .1955(.0290)

15 .0947(.0419) .1S1](.0420)
25 25 .0571(.0315) .1003(.0206)

35 .1422(.0324) .1228(,0208)

15 .107A(.0352) .1328(.0216)
35 25 .0658(.0307) ,0968(,0129)

35 .0940(.0223) .0577(.0070)

Table 6, Mean Bias, Mcan Square Error and Std. Error for I at 0 = 15 in the
GAM/WEI Regression Model

Number of Number of 1_ _

Observers Targets M.B(S.E) M.S.E(S.E)

15 .2107(.0561) .3524(.1023)
15 25 .1934(.0451) .2365(.0458)

__________ 35 f .1117(.0442) .2038(.0319)

15 .1I_170(.0418) ..1851(.0154)

25 25 .0755(.0314) .1021(.0222)

35 .14.34(.0314) .1174(.0197)

15 .1450(.0336) .1315(.0228)

35 25 .0800(.0306) .0982(.0133)
.096S(.0219) .0566(.00,2)
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Table 7. Tendencies of Mean Bias and Mean Square Error for q at 0 = 10 in the
GAM/VEI :Regr'ssoii.AModel

,,, .. .• ... M .B( :S:E)of

15 TGT, ,25TT 35 TGT
I5 OBS " .177(330) .157(.227) .076(.196)
25 OBS .095(.181), .057(.100) .142(.123)
35,0BS .107(133) .066(.097) .094(.058)

TGT = 15, 0 = 10 (UC :76 PERCENT)
1. 15 M =25

0 L~LL.
WS F VTA SM C ETA

M 35I.=3

~r

-2 D 2

Figure 13. Comparison of the Bias of q betiween Different numbers of Observers
with TGT= 15 at 0= 10 in the GAM/WEI Regression Model: TGT
= the number of targets.



TGT =25, 0 1O( UC: 76 PERCENT)
'M, 15 M =25

-2 0 2 -2 0 2Wd' CF FT'A IBA or" EtA

M =35

-2 02

BLAS Cr r.TA

Figure 14. Comparison of the Bias of q between Different numbers of Observers
with TGT= 25 at 0 = 10 in the GAM/WEI Regression Model: TGT
= the number of targets.
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TtT =35 ,0' = 10 (UC 76 PERCENT.)

Iin

-2 0 2 -2 02
BM F VA DIAS OF VA

M =35

Figure 15. Comparison of the Bias of il between Different numbers of Observers
wvith TGT = 3 5 at 0 = 10 ini the GAM/NVEI Regression Model: TGTl

=the number of targets.
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Table 8. Tendeicies of Mean Bias and Mean- Square Error for Yj at 0 15 in the
GAM/W.E1 Regression Model

___________ _ M.B(M.S.E) of i.
15 TGT 25 TGT 35 TGT

15 OBS, .21(.352) ,193(.236) .112(.204)

25 OBS { .11:(.85) .075(.102) { .143(117)

35 OBS [ .145(.132) .080(.098) .097(.057)

TGT = 15, 0 = 15 (UC : 85 PERCENT)
M 15 M =25

0 2-2 0 2
SM,' OF DA OM OF" ETA

M= 35

-2 0 2
Os CF TA

Figure 16. Comparison of the Bias of q between Different numbers of Observers
with TGT= 15 at 0 = 15 in the GAM/WEI Regression Model: TGr

the number of targets.
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TCOT 25 , -0 = 15 (UC -85 PERCENT)
M -15, M =25

-22-2 0, 2
B S OF LIA IS OF ETA

W, 35

-2 0 2
M~SCI Oe M

Fiur 1, Compari'son of -the Bias of q beti~een Different numbers of Obserners
with TGT = 25 at 0 = 15 in the GANI/WEI Regression Model: rcal

=thc number of targets,

61



TaT 35 -0 15 (,UC 85, PERCENT)
M= 15 M =,25

a. a

-2 c 2 0
BMA OF ETA BIA OF ETA

M =35

1 2 2

Mks Or, ETA

Figure 18. Comparison of the Bias of il between Different numbers of Observers
with TGT=35 at 0= 15 in the GAM/WEI Regression Model: TGT
= the number of targets.

62



2. TABLES.AND HISTOGRAMS-FORfl P

Table 9. Mean Bials,Mean Square Error and Std. Error for flO at 0 = 10 in the.. .GAM/WEI Regi'ession, Model

Numbier of Number of __ _
Observers ITargets M.Bs.E) M.S.E(S.E)

ii [5 .0605(.0- 17) .1021( .0123)
15 '25 ,-.0234(.0278) .0764(.0109)

3 5 .0-04(.0223, .0499(.0067)

15 .045S(.023 ) .0575(.0081)
25 25 -167(.0222) .0487(.0052)

35 I -.0094(.0197) ,03,3(.0056)

15 -.0067(.0198) .0386(.0067)
35 25 -.0398(.0176) .0319(.0047)

_ _ .0062(.0152) .0227(.0027)

Table 10, Mean Bias,Mean Square Error and Std. Error for POU at 0 = 15 in the
GAM/WEI Regression Model

Number of Number of A0
Observers Targets M.B(SE) NM.S.E(S.E)

15 -.0609(.03 16) ,1015(,0127)
15 25 -.0234(,0271) .,0725(.0095)

35 .0263(.0224) .0498(.0063)

15 .0365(.024-14) .0595(.0073)
25 25 -.0292(.0210) .0439(.0019)

-.015(.0184) -0335(.0053)
I'S -.0043(.019 1 ) _ 0358(.0066)

35 25 ..0454( .0176) .0324(,0041)
35 -.0021 (.013S) .O187(.0023)
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Table 1i., Tendencies of.Mean .Bias ahd Mean Square- Error for /3O at 0 = 10 inihe.. .....___ CAM/'WE] IRegressio~i Model

M.B(M.S.E) of /o3.
- 15,TGT 25 TGT 35 TGT

25 OB1S .046(.Q.5 i -,01'7(.049), -.009(.038)

.35 OBS -,007(.039) -;640(.032) .006(.023)

OBS = 15, 0 = 10 (UC : 76 PERCENT)
N 15 N =25

N =35

Bsm or eB ui

Figure 19. Comparison of the Bias of /30 between Different numbers of targets with
OBS= 15 at 0 = 10 in the GAM/WEI Regression Model: OBS = the
number of observers
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'OBS *.25 , Q' 10 (UC.: :76'PERCENT)
N 15' N =25'

wOS or MAO ElS or OUAO
N -35

IMA Or' OETAO

Figure 20. Comparison of the Bias of /30 between Different numbers of targets with
OBS = 25 at 0 = 10 in the GAM/NVEI Regression Model: 013S =the

number of observers
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OBS 35 -, 1t0 ( UC :76 PERCENT)
N'~15N= 25

WS Or ICTAO on OF TAO

N -35

Figure 2 1. Comparison of the Bias of' PlO between Different numbers of targets with
OBS = 35 at 0 = 10 in the GAM/WEI Regression Model: OBS = the
number of observers
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Table -12. Tendencies of Mean Bias and-MeanSquare Error for fPO atQ = 15'in the
GAM/WEI Regression-Model.

_M.B(M.S.E) of ,P.A
15 TGT 25 TGT 35 TGT

15 50BS ' -.061(.102) -.023(.073) .026(.050)
25 OBS. .037(.060) -.029(.044) -.018(.033)

35 OBS -.004(.036) -.045(.032) ..002(,019)

OBS = 15, 0 = 15 (UC : 85 PERCENT)
N- 15 N = 25

I:
a .

-I 0 -I 0
SAS OF aETAD BM OF DETCO

N 35

BIS OF BETAD

Figure 22. Comparison of the Bias of flO bet~een Different numbers of targets with
OBS= 15 at 0= 15 in the GAM/WEI Regression Model: OBS = the
number of observers
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:OBS,,= 25, 0 =.15 (UC 85 PERCENT)
N,"- 15 N- 25

WS Or KM NU OM
N35

MOO O M -AD
-l 0 1

Figure 23. Comparison of the Bias of PO between Different numbers of targets with
OBS = 25 at 0 = 15 in the GAM/WEI Regression Model: OBS = the
number of observers
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ObS 35 , 0 =15 ( UC: 85,PERCENT)
N-=15 N =25

N -35

Figure 24. Comparison of the Bias of flO between Different numbers of targets with
OilS = 35 at 0 = 15 in the GAM/WEI Regression Model: OBS = the
number of obhservers
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3. TABLES.AND HISTOGRAMS FOR #I

Table 13. Mean BiasMean Square Error and Std. Frror-for fl1 at 0 10 in the
GAM/WEI Regression Model

Number of Number of A__

Observers Targets M.B(S.E) M.S.E(SE)

15 .0180(.0157) .0243(.0032)-
15 25 -.0002(.0140) .0193(.0026)

35 -.0010(.0112) .0122(.0017)

15 -.0154(.0132) .0173(.0026)
25 25 -.0006(.0096) .0091(.0014)

35 -.0036(,0080) .0063(.0010)

15 .0188(.0126) .0160(.0020)
35 25 .0094(.0096) .0091(.001 1)

A 35 .0006(.0069) .0047(.0006)

Table 14. Mean Bias,Mean Square Error and Std. Error for f1 at 0 = 15 in the
GAM/WEI Regression Model

T A
Number of Number of [___
Observers Targets M.B(S.E) M.S.E(S.E)

15 .0079(.0145) .0205(.002S)

15 25 -.0060(.0127) .0158(.0022)
35 .0076(.0107) .0113(.0014)
15 -.0214(.0127) .0162(.0024)

25 25 .0036(.0090) .0079(.0013)
35 -.0046(.0075) .0055(.0009)

15 .0150(.0121) .0146(.0018)

35 25 .0077(.0092) .0084(.0010)

35 .0009(.0067) .0043(.0005)

70



Table 15. Tendenciesof Mean Bias and Mean Square ,Error forfl at 0 10 in the
GAM/NVEI, Regression Model

A

M.B(M.S.E) of P31

_ _"_ 15 TGT 25 TGT 35 TGT
15 OBS .018(.024) ,OO(.019) -.001(.012)
25 OBS -.015(.017) ..001(.009) -.004(.006)

35 013S .019(.016) .009(,009) ,001(.005)

OBS = 15, 0 = 10 (UC : 76 PERCENT)
N 15 N -25

in' c 0
uIAS Or rI- BM OF BETAI

N-35

E0.

1.0 *03 0 1.0
OAS OF BETAI

Figure 25. Comparison of the Bias of fl between Different numbers of targets with
OBS = i5 at 0 = 10 in the GAM/WEI Regression Model: OBS = the
number of observers
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.OBS 250 10( U:76 PERCENT)
N = 15 N, =5

* U!7a

* 0

-1.0 -0.1' 0 0, 1.0 -1A -u -0 0.5 1,0
WA Or mTAI 3 of ETA

N 35

I:
0 c

-1.0 ,-0,,5 0 0.8 1,0
onA or MTAI

Figure 26. Comparison of the Bias :)f PI between Different numbers of targets with
OBS = 25 at 0 = 10 in the GAM/WEI Regression Model: OBS = the
number of observers
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OBS =35,,,O,= i( UC 76 PERCENT)
N =15 N= 25

In

I I I I I t
-13 Oa ' -1.0 -0.3 0 oUs l.

MIfl Of XIIA1 WS 01' O MAI

N - 35

I:
-10 i ! Di 1.0

oIml or mwTA1

Figure 27. Comparison of the Bias of fit between Different numbers of targets with
OBS = 35 at 0 = 10 in the GAM/WEI Regression Model: OBS = the
number of observers
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Table 16. Tendencies of Mean Bias and Mean Square Error for #I at 0 = 15 in the
GAM/WEI Regression Model

M.B(M.S.E),of I1 _

1_ _ 5 TGT 25 TGT 35 TGT

I5.OBS 008(.021) -.006(.016) .008(.011)
25 OBS -.021(.016) ;004(.008) -.005(.006)

35 OBS: .015(.015) .008(,008) .001(.004)

OBS = 15, 0 15 (UC : 85 PERCENT)
N -15 N 25

' 0

hso o DEW IAS OF DTAI

N- 35

BIm* OF OLTAI

Figure 28. Comparisen of the Bias of ,l1 between Different numbers of targets with
OBS= 15 vt 0= 15 in the GAM/WEI Regression Model: OBS = the
number of observers
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OBS= 25 Q 1-5(UC:85ERCENT)
N =15 N =25

N 35

-1.0= 20 5 a 0 0.15 i .0 -1.0 -0.5E 0ersso 0odel O =t
numbe oor vers S r ~

N 75



08S = 35 ,0 =15,,( UC :85 PERCENT)
N15 -N =215

!1.0 -0. 0 0.5 1.0 -1.0 -0. 0 Di 1.0

N-35

OBS= 35 at 0= 15 in the GAM /WEI Regression Model; OBS the
number of observers
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:4. TABLES AND, HISTOGRAMS FOR fl2

Table .17.- Mean BiasiMean Square Error and Std. Error-for fi2 at 0 10 in the
',GAM/WEI Regression Model

Number of Numnber of J 2
Observers, Targets M.B(S.E) M.S.E(S.E)

15.0167(.009,7) '09(00 i2)

15 25 .0057(.0075) .0056(.0008)
_______ 5 -.0097(.0,053) .0629(.0004)

15 -.065,1('.0073) .0053(.0008)
2 5 25 .0040(.0054), .0029(.0004)

________ 35 .0020(.0046) .0021(.0003)

15 .0002(.0062) .0038(.0006)
15 25 .0083(.0044) .0020(.0003)

______ 35 .,0046(,0033) .001l(.000l)

Table 18. Mean Bias,Mean Square Error and Std. Error for #2 at 0 =15 in the
GAM/WEI Regression Model

Numiber of Number of ______________f 2Observers Targets M. B(S.E) M.S.E(S.,E)

15 j .0185(.0091) .0084(.00 12)
15 25 .0055(.0070) .0049(.0006)

_________ ________ ..0124(.0052) .002S(.0004)

15 -.00O15(,0009) .0046(.0006)
25 25 .O7(05).0025(.0003)

_______3 f 5 .0024(.0042) .0018(.0002)

15 ..0016(.0057) .0032(.0005)
3525 .0086(.0045) .0020(.0003)

_______3 j 5 -.0007(.0032) .00l0(.000I)
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Table 19. Tendencies of Mean Bias and Mean Square Error for f2 at 0 = 10 in-,the
_ _ GAM/WEI Regression Model

A

__ _ _ _ M.B(M.S.E) of __

15_TGT 25 TGT 35 TGT
i5,0BS .017(.010) .006(.006) -.010(.003)

25 OBS -.005(.005) .004(.003) .002(.002)

35 OBS .000(.004) .008(.002) -.005(.001)

OBS = 15, 0 = 10 (UC : 76 PERCENT)
N- 15 N ,25

:I:
-0.A -0.2 0 .2 0.4 -QA --. 2 0 0,2 G,

SM OF BENA2 9 OF ETA2

N=35

vi

-V.4 -0.2 0 0.2 0 .
DUA OF BETA

Figure 31. Comparison of the Bias of f#2 between Different numbers of targets with
OBS = 15 at 0 = 10 in the GAM/WEI Regression Model: OBS = the
number of observers
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OBS =25 ,0=10 (UQ 76. PERCENT)
-N -15& N =25

-.44 -0.2 a' 0.2 0.A -4.4 -02 0 0.2 0.4
WIAS Of IETA2 9M4 OF KrA2

N - 35

-4M -42 0 9.2 MA
em or Bun~

Figlure 3. Comparison of the Bias of fl2 between Different numbers of targets with
OBS=25 at 0= 10 in the GAMI/WEI Regression MNodel: OBS =the

numberof observers
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OBS= 35 0 1,( UG 76PERENT.),
W 15, N " 25

37

,'., ->--' a .4-&4 -IN OrV2W"C A
N -35

-0.

Figure 33. Comparison of the Bias of fl2 between Different numbers of targets with
OBS = 35 at 0 = 10 in the GAM/WEI Regression Model: OBS = the
number of observers
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Table 20. Tendencies of Mean Bias and Mean Square Error for P2 at 0 = 15 in the
_GAM/WEIRegressidn Model

M.B(M.S.E) of _,A

15 TGT _ 25 TGT 35 TGT

15 OBS .018(.008) .006(.005) -.012(.003)
25 OBS -.OOl(.005) .007(.002) .002(.002)

35 OBS -.002(.003) .009(,002) -.001(.001)

OBS = 15, 0 = 15 ( UC : 85 PERCENT )
N 15 N 25

-CA -0.2 0.2 O.4 -CA -0.2 0 0.2 0.4
BkS OF IT A2 RMA OF BTA2

N 35

-CA -0.2 0 0.2 04
VM4 OF DETA2

Figure 34. Comparison of the Bias of /2 between Different numbers of targets with
OBS= 15 at 0= 15 in the GAM/WEI Regression Model: OBS = thenumber of observers
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OBS =5,i 0Q 15 (,UC: 85 PERCENT)
-N -iS N- =25

I:M
IAS OF Wr1A2' NU OF UCTA2

N -35

-0.4 -42 0) 0,2 0.4
onA Or BETA2

Figure 35. Comparison of the Bias of P2 between Different numbers of targets with
OBS = 25 at 0 = 15 in the GAM/WEI Regression Model: OBS = the
number of observers
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-OBS ' 35 , 15 (UC :85 PERCENT)
N 15N =25

C04 -02 0 02 04-0Q4 *42 0 0U U.

N =35

-0.4 -42 0 U. 0.4
OM OF 5PTA2

Figure 36. Comparison of the Bias of Pi2 between Different numbers of targets mith
OBS = 35 at 0 = 15 iii the GAM/WE! Regression Model: OBS =the
number of observers
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5. TABLES AND-HISTOGRAMS FOR

Table 21. Mean Bias, Mean Square Error and Std. Error for at 0 = 10 in the
GAM/WEI Regression Model

Numberof Number of ,

Observers Targets M.B(S.E) M.S.E(S.E)

15 -.0318(.0067) .0054(.0007)

15 25 -.0158(.0056) .0033(.0005)

35 -.0131(.0048) .0024(.0003)

15 -.0226(0053) .0033(.0005)
25 25 -.0078(.0036) .0013(.0002)

35 -.0025(.0038) .0014(.0002)

15 -.0196(.0044) .0023(.0003)

35 25 -.0065(.0036) .0013(.0002)
35 -.0071(.0028) .0008(0001)

Table 22. Mean Bias, Mean Square Error and Std. Error for at 0 = 15 in the
GAM/WEI Regression Model

Number of Number of
Observers Targets M.B(S.E) M.S.E(S.E)

15 -.0349(.0064) .0052(.0011)
15 25 -.0147(.0051) .0027(.0005)

35 -.0129(.0041) .0018(.0002)

15 -.0181(.0047) .0025(.0003)

25 25 -.0089(.0037) .0014(.0002)
35 -.0027(.0035) .0012(.0002)

15 -.0192(.0041) .0020(.0003)
35 25 -.0049(.0033) .0011(.0002)

35 -.00S3(.0025) .0007(.0001)
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Table 23. Tendencies of Mean Bias-and Mean Square Error for at 0 =10 in the
GAM/Wtl Regression Model

A

______________ M.B(M.S.E)of_~________

15 TGT 25TGT 35 TGT

15 OBS -.032(.005) -016(.003)) -.013(.002)
25 OBS -.023(.003) -.008(.001) -.003(.001)J35 OBS -.020(.002) -.007(.001) __ .007(.001)___

TOT = 15 ,0 =10 ( UC :76 PERCENT)
M = 15 M =25

'-CA -0.2 01 0. 4 QA -C 2 4 0 0.2 0.4
elks or X1 8M' OF XI

M35

0.4 -0.2 0 0.2 9.4
BIAS Or x

Figure 37. Comparison of the Bias of betien Different numbers of Obse rvers

with TGT= 15 at 0= 10 in the GAIM/WE! Regression Mvodel: TGT
=the number of targets.
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TGT 25 0 to UC 76 PERCENT')
M =15 A =25

-IDA -04 a 0.2 0.4A
N"4 or zl W.S OF M

M -35

Figure 38. Comparison of the Bias of between Different numbers of Observers
with TGT= 25 at 0 = 10 in, the GAM/WEI Regression Model: TGT

=the number of targets.
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TGT =35,0 = 10(UC : 76 PERCENT)
M =15 M=25

I>I

A I €,1 BL&SO? g Xl0644 -M42 04 0. U0.

M 35

•-0.4 -0.2 0 ,2 0.4DM:/ OF MI

Figure 39. Comparison of the Bias of between Different numbers of Obse rvers
with TGT= 35 at 0 = 10 in the GAM/WEI Regression Model: TGT
= the number of targets.
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Table 24. Tendencies of Mean Bias and Mean Square Error for at 0 = 15 in the
GAM/WEI Regression Model

M.B(M.S.E) of
15 TGT 25 TGT 35 TGT

15 OBS -.035(.005) -.015(.003) -.013(.002)
25 OBS -.018(.002) -.009(.o01) -.003(.001)

35 OBS -.019(.002) -.005(.001) .-.008(.01)

TGT = 15 , 0 15 (UC : 85 PERCENT)
M,-15 M -25

-4A -.0.2 0 D.2 04 -,0.4 . 2 0 0.2 0.A

aO&s Of x BIA$ OF Ai

M - 35

O -42 0 0.2 0.4
BS OF AI

Figure 40. Comparison of the Bias of between Different numbers of Observers
with TGT= 15 at O= 15 in the GAM/WEI Regression Model: TGT
= the number of targets.
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TGT = 25, 0 = 15 (,UC -85, PERCENT)'

V'= 15- M- 25

a a

gn I:
* I C~

-0.4 -0.2- l 0.2 0.4 -CA -.4 0 02 - 0.4
!sm Or X is OF VI

M , 35

-0.4 --t2 0 0.2 0.4

NN Or X

Figure 41. Comparison of the Bias of between Different numbers of Observers
with TGT= 25 at 0 = 15 in the GAM/WEI Regression Model: TGT
= the number of targets.
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TGT - 35, 0' 15 (UC: 85 PERCENT ),
M, 15 M =25

* U

-. 4 -0.2 0 0.2 0.4 - . 0 0.2 0.4
!1"S CF X IAS Of XI

M , 35

:3

-0.4 -0.2 0 0.2 0.4
ONAS OF XI

Figure 42. Comparison of the Bias of between Different numbers of Observers
with TGT= 35 at 0 = 15 in the GAM/WEI Regression Model: TGT
= the number of targets.
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APPENDIX'C. SIMULATION PROGRAM FOR THE ESTIMATE OF '
IN THE SINGLE PARAMETER GAMMA MODEL

V R+SIMULAI ;M;N;O;I;J ;K;SL;ETA;OUT;PAGE;AVUCL,;MB;SEMB;MSE;SEMSE
;RRR
[I] AAARARAAAA KEY GLOBAL VAR.ABES : BOOKI ; BOOK2 ; UCL AAARAARA

[2] AAAAAA RAAAARAAAARRAARRR DATA INPUT AAAAAAAAAAARAAAARA
[3] M+ 15 25 35
[4] N-( 15 25 35
[5] 04- 10 15
[6] ETA+l
[7] I+J+K+L~0
[8] AAAAAAAA RAARA START LOOPING THE SIMULATION I AAAAARAA RRRA
[9J LOOPI:I+I+l
[10] LOOPJ:J+J+l
[III LOOPK:K<-K+1
[12] RflAAA AAAAAAA RESET THE RANDOM NUMBER SEED AAAAAA
[13] 0+O[I],1M[J],N[K]
[14] ORL+466801743
[15) LOOPL:L+L+1
E16] ARAR~AAARAARRA CALL GAMMA ESTIMATE FUNCTION PAAARARAPR
[17] RRR+ORL
[18] OUT+GAMMA(O[I] ,M[JJ,N[KJ)
[19] ARPARRA RECORD UCL AND ALL THE ESTIMATES IN REPLICATIONS APAPA
[20] +((L=1),L>1)/INTZI,GO1
[21] INTZ1:PAGE+(1,POUT)p(OUT-0,ETA)
[22] +LOOPL
[23] GO1:PAGE+PAGE,[1] (OUT-Q,ETA)
[24] TESTL:
[25] >(L<100)/LOOPL
[26] AARF4RRR COMPUTE AVE. UNCENSORED LEVEL AND ALL THE STATISTICS AA

[27] AVUCL+((+/PAGE[;1] )+L)
[28] MB<-(+/PAGE[;2] )+L
[29] SEM4B+((+/(PAGE[;2]-M1B)*2)*(LxL-2))*0.5
[30] MSE+(+/PAGE[;2)*2)+L
[31] SEMSE ((+/((PAGE[;2]*2)-MSE)*2)*(LxL-2))*0.5
[32] L<+Q
[33] ApnA~ KEEP ALL THE INFORMATIONS FOR GRAPHICS AND TABLES AA
[34] +(((IxJxK)=1),(IxJxK);z±1)/INTZ2,GO2
[35] INTZ2:
[36] BOOKI+(l,pPAGE[;2] )pPAGE[;2]
[37] BOOK2+(1,4)p(MB,SEMB,MSE,SEM4SE)
[38] UCL+AVUCL
[39] +TESTK
[40] G02:
[41] BOOK1<-BOOKI,[1] PAGE[;2]
[42] BOOK2+BOOK2, [1](MB ,SE4B ,MSE,SEM4SE)
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143J, iCL+UjCL,AVUCL,
[4±]&ESK:

[N45) (KpN)/L06PK
'4 6-J K4-0O

[48-) J4+0
[49§] +(T-<pO)/lOOPI
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V R+GAMMA INPUT;M;N;O;ETA;ETA0;XI;XIO ;A;WA;MU;U;Y;DELTA;C;XB;RR
;Ml,;M2; T;-DATA; K; FL; FM,;FR; LB,;MP; RB; S

£1) AAAAAAA SIMULATION INPUTS AND THEORETICAL PARAMETERS AAAR
£2] M+INPUT[2),

£)N4+INPUT E3J1
[.41 04'(MN-)pINPUT[l)
C5] ETA+l
£[6] MU+4,.2
[7] kI0+O(N,M)pXI+Mp0
£8) AAAAAAAAAAAAAARRA RANDOM NUMBER GENERATIONS AAAAAARAPRPAP
£9) A+N(N,M)PM GAMRAND((*ETA),+*ETA)
[16) WAI+(M,N)p(MxN), EXPRAND 1
[II] AAAAAAAA DETECTION TIME AND UNCENSORING DATA ARARRAAAARAR
£12) LI+MUx (WW+A)* (*Xlo)
[13) A'-AW+iO
[14) Y+(OU)4L(9O)
[15) C++/[23 DELTA.+(0U):5(0O)
£16]. 0+10
£17] XB+OMU
El?)3 AAAAAA INITIAL CONDITION FOR GAMMA PARAMETER $ETA AAAA
[19) RR+(Y-XB)x*(CIXXIO)
[20) M1+-0.5772
[21) M2+(+/+/DELTAxRR*2)*,(+/C)
£22 ETAO+0
[E,23) +(O>T+(((o1)*2)*-6)+(M2*2)-(MI*2))/BISECTION
[2t43 ETA0+1IxoT
£25) RAARR FIND BOUNDS AND BISECTION SEARCH FOR GAMMA PARAMETER DETA AA
£26) BISECTION:K+-0
£27) DATA+(S++/£2)*RR),C
£28) FM+ETAo FVALUE DATA
£29) PAAAARRFAA FIND THE RIGHT AND LEFT BOUND FOR ETA AAARRAARAP

£30) BOUND:K+Ki+1
[31) FL+(LB<-ETAO-KxO.5) FVALUE DATA
£32) FR+(RB+ETAO+Kx 0.5) FVALUE DATA
£33) +(((xFM)x(xFL))<O)/SETRB
[34) +(((XFM)X(XFR))<O)/SE2'LB
£35) +BOUJND
£36) SETRB:RB ETAO
£37) +BISECT
£38) SETLB:LB+ETA0
£39) AAAAAAAA PERFORM THE BISECTION SEARCH FOR ETA AAAAAA
£40) BISECT:
[41) FM+(MP+(LB+RB)+2) FVALUE DATA
£42) FL+-LB FVALUE DATA
£43) +((RB-LB)<(Io.olXzMp))/END
[44) +((((XFM)X(XFL))<O),(((xFM)x(xFL))>O))S;APR,SWAPL
[45) SWAPR:RB+MP
[46) +BISECT
£47) STIVAPL:LB+MP
£48) +3BISECT
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£49) APAA ARRAAARAAARRAAA 'OUTPUT THE ESTIMATES ARRRIAARRRRPAARI

£51] ETAO0-(Rb +LB)+ 2

VR+ETA FVALUE DATA;M;qS;C;SUBF;I
El' +(p DATA) +2

[2] $;+M,+DATA.
£3) C+1v24DATA
E£4) SUBF-
[5) 1+0
£6) LOOP:1+1+l
£7) + (C [Y0 )/CHECKI
[8) SUBF+-SUBF+(+/*(*ETA)+(iCEI) )-1)
[9) CHECKI:
[10) +(I<l2)/LOOP
Ei1) R+(-*ETA)xSUBF+(+/ETA+( (S-C)*-S+*ETA)+1Ixe(S+*ETA))

V
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APPENDIX D. SIMULATION PRO GRAM, FOR THE ESTIMATES OF
ALL, PARAMETERS. IN GAMMA/WVEIBULL REGRESSION MODE L

V R+SIMULA2;M; N;0;1; J; K; L#X; E;ETA; BO; B1;B2;XI;0OUT; PAGE; AVUCEX;MB
;SEM ; MSE; SEMSE ;RRR

Ell RAARAAARA KEY GLOBAL VARIABES : BOOKI ;BOOK2 ; UCLEX RAAARA
12] AAAAARARAAAAAAAAAAAAARAAARR DATA INPUT ARRRRRRRRRRRRRRARRRAA
£33 M+ 15 25 35
£4] N+ 16 25 35
;te5s 0+ 16 15
[6] ETA+l
[7] BO+0. 8
[8] B1+70.2-
x£9J B2+0.5
£10] XI+0
£11] ARRRRRRRRRRRRRR START LOOPING THE SIMULATION RAAAARRRRRRRRRA
El12) X+J.+K+L+E+X+0
£13) LOOPI:X.i+I+l
[1,4) LOOPJ7:J+J+l
C1l~5 LOOPK:K+K+1
£16) AAAARRAAAAAA RESET THE RANDOM NUMBER SEED RRRRRRRRRAAA

[18) ORL+466801743
£21) LOOPLr:L+L+1
E20] RARAAARRAA CALL GAMMA/WEIBULL REGRESSION FUNCTION AAAAAAAA

E21) RRR+ORL
[22) OUT GAMWEI(O[Xl],MEJ) ,NEK]
t23) AA ARAA SKIP THE INSUFFICIENT VARIABILITY CASE FOR GAMMA AA
£24) +(OUTE2>7c99g99)/CHECKETA
£25] E+E+1
£26) L+L-1
£27) +TESTL
£28] PARR RECORD THE RANDOM SEED FOR THE ILL CONDITION OF ETA AAA
£29] CHECKETA:
£30] +(OUT[2)1;el00O)/GOGO
£31] 0+'BAD ETAI
£32] 0+RRR
[33) L+L-l
£34) +TESTL
£35) AAARAA RECORD u AND ALL THE ESTIMATES IN REPLICATIONS AAA
£36) GOGO:

£38) INTZI:PAGE+(1,(pOUT)-l)p(C1I+OUT)-O,ETA,B0,B1,B2,XX)
£39) X* X+C1+OUT)
£40) -.'LOOPL
[' 41) GO1:PAGE+PAGE,El)(ClI+OUT)-o,ETA,Bo,Bl,B2,xx)
£42] X-(-X+(1I+OUT)
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t4,3]3 A AAAAA RECORD THE RANDOM SEED FOR THE ILL CASE OF XI AAARP
£[44]' +( (i+OUT)=01)TESTL
£'453 04-'BAD XI'
£[4'6] O+RRR
£47,] ,AAiqAAAAAPAAAAPAAPAAARPARRAAAPIAARA$APARAARRAAA~tRAAR PRfAAAAA
£248] TESTL:
14,9) +(L<100) 4LOOPL
£50] AAAR COMPUTE AVE. UNCENSORT ) LEVEL AND ALL THE STATISTICSA
£513 AVUCEX+((+/PAGE[;l2 )*L),E,X
£52) MB+,(+/£1.] PAGE+ 0 1 +PAGE)*L
£'533 SEMB+(-(+/£l)(PAGE-(pPAGE)pMB)*2)*( LxL-2))*0.5
£54] MSE+(+/£1) PAGE*2)+L
£55) SEMSE+((+/£l)((PAGE*2)-(pPAGE)pMSE)*2)+(LxL-2))*O.5
£56] L4-E+X+0
£57]' AAAAAAA KEEP ALL THE INFORMATIONS FOR GRAPHICS AND TABLES AAA
£58] -((IxJXK)=1),(IxJxK);91)/INTZ2,GO2
£59] INTZ2:
£60) BOOKI+(ltpPACE)pPAGE
£61] BOOK2+(1t4,pMB)p(MBSEMBMSESEMSF)
C621 UCLEX+ 1 3 pAVLJCEX
£63i *TESTK
£64) 002:
£65] BOOKI+BOOKI,£1] PAGE
£6] BOOK2+BOOK2,L113((4,pMB)pMB,SEMBMSESEMSE)
£67] UCLEX+UCLEX,Ea] AVUCEX
£68] TESTE:
£69) +(K'~pN)/LOOPK
£70] K+0
£71] +(J<pM)/LOOPJ
£72] J+Q
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VdAMWEI£OJ V
V R+(GAMWIEI INPUT;M7;N;O;ET-A;ETAO;B;BO;Bl;B2;XI;XIO;A;'W;X1;X.2

;M;U;Y';DELTA;C;'B;RR;W;UO ;Ul,;U2 ;UU;Z;i; VAR;Ml ;M2 ;T;DATA;K
;FL;FLO ;FM;FR;FR0;LB;MP;RB;,CS;H;DH;DIFFXI;BK;S;J;X;XX;BADXI

A£1]AAnRA SIMULATION INPUTS AND THEORETICAL PARAMETERS RAAAAAA
£2 +INPUT£[2]

[3] N+IPUTt 3)
[A4) O+(MoN)pINPUT£1)
£5] ETA 1

6) B0+0.8
£7 Bl+0.,.2

£8]j B2+0.5
£9i XIQ+O(N,M)pXI+Mpo
£10) AA PARAARPRA RANDOM' NUJMBER GENERATIONS AAAAARAAAAARAARRPARA
£11]l A+0(N,M)p'M GAMRAND ((*ETA), +*ETA)
£1'2J /+(M,N)p(MxN ) EXPRAND 1
T131 Xl+(,N)p(MXN) NORRAND 1 0.5
£1:4)3 X2+(MpN)p(MXN)-NORRAND 2 1
E15] AAAF4AA DETECTION TIME AND UNCENSORING DATA RAAAAAARAP
£16] M(J* (BO+(BlX1 )+B2xX2)
£17] U<MVX (WWfA)* (*XIO)
£1§] A.+'wvkU+ 1,o

£20] C++/123 DELTA+(U)(O

£?2] AAA AAA INITIAL ESTIMATES WITHOUT GAMMA R.V. INVOLVED RAAFI
1£23] XB~oU
£24) 1+0
£25] INITZ: I I+1
£26] W <(*(Y-XB)X*(1IXXI0))*0.5
£27] Uo+((M,N)pl)xAx*(lIxXIO)
£28] LJ1Xlx~x*(IxXIQ)
£29) U2 X2xA~x*(ThLXXIO)
£30) [JUN(3,MXN)p(,U0),(,Ul)v(,U2)
£31] U0+U1+U2+i0
£32) Z O, (P/Xx*(1IxXI0))+((1xDELTA)+Y*2)+T
£33) W~+i0
[3Z41 B+Z@UU
£35] Z+UU~i0
£36) BK B
£37) XB B£1)+(B£2]XXI)+B£3]xX2
[38) RR+(Y-XB)X*(lIXXIO)
£39) XI0 tO(N,)pXI+XI+DIFFXI (C-+/RRx((1IxDELTA)+*RR))+
((-lxC>-+/(RR*2 )X*RR)

[ 41) SAAAAAAA VARIABILITY CHECK FOR UNCENSORED TIMES AAflAAA

£42) VAR -(+/+/(1I+(U+(*XB))*(*lIXXIO))*2)+C1+M4XN)
£43) U-cl0
£44) ETAO+-99999
£45i X-(-Xp 1
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£46] T*;'P
£-47] +(VARe<1)/END
£483- RAAAAAAAARINITIAL CONDITION FOR GAMMA PARAMETER ,ETA AAAAARA
149]' RR+(Y-.XB):x*(1xXI0)-
£50]- M1+70.5772
£51) M2+(+1+IDELTAxRR*2)+(+1C)
£523 ETAO+O
£[53] +(o>T+(((ol)*2)6)+(M2*2)-(MI*2))READY
£54]' ETAO+1IxeT
£55] READY:BADXI+0
£56] AA LARGE.RECURSIVE LOOP INCLUDING ESTIMATE OF GAMMA PARAMETER ,ETA
£57] RECURSIVE:K 0
£59] J+J~l
£59], DATA+(S++/£23*RR),C
[60] FM+ETAO FVALUE DATA
£61] AARA B.',SECTION SEARCH METHOD APPLIED-TO ESTIMATE ETA AAAR
£62] BOUND:K+X+1
163] FL+(LB+ETAO-KxO.5) FVALUE DATA
£64] FR+(RB+ETA0+Kxo.5)- FVALUE DATA
£65] RRARRR AAAA R DETECT ILL CONDITION FOR ETA AAAAAARAARA
£66] +(K:51Q)/CRECKLRB
£67] +(-((( IFRO-FR)*0.5)<0.01)A(( IFRY'<0.1))/CHECKLRB
£68] ETAO+100000
1£69] +END
£70] RRRARRR RRRMRRRRRAAAAAAAAR RARA RRRRRRRAAAAARRRRRAAAARARR
£71]' CHECKLRB:
£72] +(((xFM)x(xFL))<0)/SETRB
£73] +(((xFM)X(XFR)')<0)/SETLB
£74] FLO+FL
£75] FRQ+-FR
£76] +BOUN~D
£77] SETRB:RB<-ETAO
£78]3 +BISECT
£79] SETLB:LB+ETAO
£80] BISECT:
£81] FI.2(MP(LB+RB)*2) FVALUE DATA
£82] FL+LB FVALUE DATA
£83] +((RB-'LB)<(I0.olxMP))/REGRESS
£84) +((((xFMl)x(xFL))<0),(((XFMI)X(XFL))>0))/SAPR,SIAPL
£85] SWa.PR:RB+14P
£86] +BISECT
£87] SIIAPL :LB<-MP
£88] +BISECT
£89] AA~ REGRESSION PROCEDURE FOR WEIBULL SCALE PARAMETERS ,BETAVS RA
£90] REGRESS:
£91] ETAO+(RB+LB)+2
£92] W+((CS+N(N,M)p((C+*ETA0)+S+*ETA0))x*RR)*0.5
£93] U0+((M,N)pl)xWx*(lIxXIO)
[9'4] U1 XIXNlX*(1X10)
£95] U2+X2xJx*(1IxXI0)
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£97) UO+Z11+U24+iO0
£9)Z+o (WxXBx*(1IXXI)+(.(1IXDELTA)+W*2)+7

£99) B+ZmUU,
11:001 uu+z+10o
£101) A 'APAAAAPRA-NEWTON PROCEDURE FOR WEIBULL SHAPE PARAMETER ,XIIS Ann
-1021- XB+B£1J+'(BE2]XXI)+B[3)XX2
£103) RR4+(Y-XB)x*C-IxXIO)
£104) H+(1I-XC)+('+/£2) RRX((1IXDELTA)+CSx*RR))
C105) DH+( .XC)'-(±/[2) CSx(*RR)xRR*2)
£106), AARPRRAAARAARRA DETECT THE ILL CONDITION OF XWTS RAAPAAAAR

[108) +('.((XXX)O)ABADXI=0)/NEyITONXI
[109] BADXXI41

,[111) NEWTCNXI:
£112) XI0+0-(NV,M)PXI+XI+DIFFXI+XXx (lxH)*DH
£1131 AA TEST FOR STOPPING CRITERIA AND UPDATE THE VALUE OF VARIABLES
[114) +((x/(I(DIFFXI+XI),(BK-B)*B)<o.ol)V(J !5o))/END
[115) BK+B
[1,16) RR4-(Y-XB)X*(ThtXXIO)
[117), +RECURSIVE'
[118) AAAAAA OUTPUT UNCENSORED LEVEL AND ALL ESTIMATES AAlAAARA
[119) END:
£120) R+((+/C)+MxN),ETAO,B£1),B£2),B£3),((+/XIXX)+(+/X)),+h-X
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